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Parametrically-excited surface waves, forced by a repeating sequence of N delta-function impulses,
are considered within the framework of the Zhang-Viñals model �W. Zhang and J. Viñals, J. Fluid Mech. 336,
301 �1997��. With impulsive forcing, the linear stability analysis can be carried out exactly and leads
to an implicit equation for the neutral stability curves. As noted previously �J. Bechhoefer and B. Johnson, Am.
J. Phys. 64, 1482 �1996��, in the simplest case of N=2 equally-spaced impulses per period �which alternate up
and down� there are only subharmonic modes of instability. The familiar situation of alternating subharmonic
and harmonic resonance tongues emerges only if an asymmetry in the spacing between the impulses
is introduced. We extend the linear analysis for N=2 impulses per period to the weakly nonlinear regime,
where we determine the leading order nonlinear saturation of one-dimensional standing waves as a function
of forcing strength. Specifically, an analytic expression for the cubic Landau coefficient in the bifurcation
equation is derived as a function of the dimensionless spacing between the two impulses and the fluid
parameters that appear in the Zhang-Viñals model. As the capillary parameter is varied, one finds a parameter
regime of wave amplitude suppression, which is due to a familiar 1:2 spatiotemporal resonance between
the subharmonic mode of instability and a damped harmonic mode. This resonance occurs for impulsive
forcing even when harmonic resonance tongues are absent from the neutral stability curves. The strength of
this resonance feature can be tuned by varying the spacing between the impulses. This finding is interpreted
in terms of a recent symmetry-based analysis of multifrequency forced Faraday waves �J. Porter, C. M.
Topaz, and M. Silber, Phys. Lett. 93, 034502 �2004�; C. M. Topaz, J. Porter, and M. Silber, Phys. Rev. E 70,
066206 �2004��.
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I. INTRODUCTION

Standing waves form spontaneously on the free surface
of a fluid layer when it is subjected to a time-periodic
vertical vibration of sufficient strength. The waves, which
result from a symmetry-breaking parametric instability,
organize themselves into remarkably regular patterns, as first
described by Faraday in 1831 �1�. In modern experiments,
various container geometries, fluids, and forcing functions
have been employed, resulting in a rich variety of standing
wave patterns, as well as a range of dynamical responses.
See �2,3� for reviews on Faraday waves. In this paper, we
investigate the response of the Faraday system to an ideal-
ized forcing function consisting of a periodic sequence of
delta-function impulses. The results are contrasted with those
obtained in the classical cases of single and multifrequency
forcing.

The versatility of the Faraday system for investigating
pattern formation owes much to the vastness of its control
parameter space. By varying the forcing frequency and
amplitude of a sinusoidal acceleration function, as well as
the fluid properties, experimentalists have teased out
spatially regular patterns ranging from stripes, hexagons and
squares to targets, spirals and quasipatterns �4–7�. The semi-
nal experiments of Edwards and Fauve �8� showed how the
addition of a second commensurate frequency component in

the forcing function could lead to even greater versatility of
this system, via the controlled introduction of additional
length scales. Two-frequency forcing has led to various
exotic superlattice patterns �9,10�, as well as quasipatterns
�11,12�, triangular patterns �13�, and localized structures
�14�. A detailed description of patterns readily achieved in
two-frequency Faraday experiments can be found in �15�.
Recent experiments by Epstein and Fineberg �16� have
employed a third perturbing frequency to rapidly switch
between the novel patterns achieved with two-frequency
forcing.

Theoretically, the Faraday system presents a number of
challenges due both to the explicit time dependence of the
forcing and the free-boundary nature of the problem; for a
partial review of theoretical work see �3�. Consequently,
models incorporating simplifying assumptions have often
been relied on, in conjunction with numerical linear stability
analysis or perturbative methods. Linear stability results
build on the classic paper of Benjamin and Ursell �17�, who
showed that the linear stability problem, in the case of an
ideal fluid, reduces to a Mathieu equation, thereby explaining
Faraday’s observation of a subharmonic response of the fluid
layer to sinusoidal forcing. Subsequent investigators carried
out linear stability analyses for a viscous fluid layer sub-
jected to sinusoidal forcing �18–21�. These results were also
extended to two-frequency forcing in �22�. Theoretical un-
derstanding of the nonlinear problem progressed with the
introduction of a quasipotential formulation of the Faraday
wave problem by Zhang and Viñals �23�. This model, which
describes small amplitude surface waves on a semi-infinite,*Electronic address: acatlla@math.duke.edu
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weakly viscous fluid layer, eliminates the bulk flow, assumed
to be potential, from the description. The free boundary
z=h�x , t� �x�R2� is then prescribed by an evolution equa-
tion for h, which is coupled to an evolution equation for a
surface velocity potential �; see Sec. II. Zhang and Viñals
used this model to further investigate nonlinear effects via an
asymptotic expansion, which demonstrated the importance of
resonant triads �three-wave resonance� in the pattern selec-
tion process.

The investigations reviewed above focus on Faraday
waves parametrically excited by sinusoidal and multifre-
quency forcing functions. An alternative forcing function,
consisting of a periodic sequence of delta-function impulses,
was proposed by Bechhoefer and Johnson �24� who indi-
cated how the linear analysis could be greatly simplified in
this case. �This idealization of parametrically forced systems
has been put forth in a variety of physical contexts; see, for
example, �25–27�.� Recently, Huepe and Silber �28� showed
that the linear analysis of the impulsively-forced Faraday
problem for a viscous fluid, as proposed in �24�, breaks down
in certain parameter regimes. In these regimes, the flow in
the fluid bulk cannot be �instantaneously� matched across the
delta impulses. However, these complications are absent
from the Zhang-Viñals formulation, which describes the evo-
lution of the free surface, with the bulk flow eliminated from
the model. In this paper we extend the results of Bechhoefer
and Johnson on impulsively-forced Faraday waves into the
weakly nonlinear regime, within the framework of the
Zhang-Viñals model.

Following the method of �25�, we develop a simple modu-
lar approach to constructing the stroboscopic map associated
with the linear stability problem. Specifically, we construct
the linear maps which evolve perturbations of wave number
k from one impulse in the sequence to the next. From this
simple construction we can derive explicit expressions for
the Floquet multipliers associated with the linear stability
problem, and arrive at an equation �implicit if N�2� that
describes the neutral stability curves.

We extend the analysis for N=2 impulses per period to
the weakly nonlinear regime for one-dimensional surface
waves. A key observation of Bechhoefer and Johnson �24� is
that there are no harmonic resonance tongues for a sequence
of N=2 impulses if they are equally spaced in time �i.e., an
up impulse and then a down impulse half a period later�. We
show that, despite the absence of harmonic instabilities, there
can still be a significant resonant interaction between the
excited subharmonic and damped harmonic modes which
leads, in one dimension, to an associated degradation in the
�weakly� nonlinear response of the fluid to the vibration. This
is similar to the spatiotemporal 1:2 resonance that occurs in
the case of sinusoidal forcing �23�. In addition to analyzing
the case of N=2 equally-spaced impulses, we explore the
effects of varying the spacing between the impulses so that
they are no longer exactly half a period apart. We find that
this asymmetry in impulse timing enhances or diminishes the
influence of the 1:2 resonance on the standing wave ampli-
tude depending on the sense in which it is applied. We un-
derstand this result by considering a two-term Fourier series
approximation to the impulsive forcing function, and apply-
ing recent results pertaining to multifrequency forcing
�29,30�.

Our paper is organized as follows. In the next section we
present the Zhang-Viñals model of Faraday waves and carry
out the linear stability analysis in the general case of N im-
pulses per forcing period. We then focus on the simplest case
of N=2 and compare our results with those obtained for
sinusoidal and multifrequency forcing functions. In Sec. III
we derive the cubic bifurcation equation that determines the
amplitude of one-dimensional spatially-periodic surface
waves driven by impulsive forcing, focusing on the 1:2 spa-
tiotemporal resonance feature. We compare our weakly non-
linear results with those obtained for single and two-
frequency forced Faraday waves. Finally, in Sec. IV, we
summarize our results and indicate some directions for sub-
sequent investigations.

II. LINEAR RESULTS FOR THE ZHANG-VIÑALS
FARADAY WAVE MODEL

A. Zhang-Viñals model

The quasipotential formulation of the Faraday wave
problem, due to Zhang and Viñals �23�, is derived from
the Navier-Stokes equations assuming small amplitude
surface waves on a deep, nearly inviscid fluid layer. It
describes the free surface height h�x , t� and surface velocity
potential ��x , t� of a fluid subjected to a �dimensionless�
periodic vertical acceleration function G�t�. Employing these
equations greatly simplifies our calculations since the flow in
the bulk does not appear explicitly—we need only to track
the behavior of the free surface, a function of the horizontal
coordinate x�R2 and time t. The Zhang-Viñals model takes
the form

��t − ��2�h − D̂� = N1�h,�� , �1a�

��t − ��2�� − ��0�
2 − G0 + G�t��h = N2�h,�� , �1b�

where the nonlinear terms in �1� are given by

N1�h,�� = − � · �h � �� +
1

2
�2�h2D̂�� − D̂�hD̂��

+ D̂�hD̂�hD̂�� +
1

2
h2�2�� , �2a�

N2�h,�� =
1

2
�D̂��2 −

1

2
����2 −

1

2
�0 � · ���h���h�2�

− �D̂���h�2� + D̂�hD̂��� . �2b�

Here the operator D̂ multiplies each Fourier component by

its wave number, e.g., D̂eik·x= �k�eik·x, and the dimensionless
fluid parameters are

� �
2�k0

2

�
, �0 �

�k0
3

	�2 , G0 �
gk0

�2 , �3�

where g is the usual gravitational acceleration, � is the forc-
ing frequency, � is the kinematic viscosity, 	 is the density,
and � is the surface tension. The wave number k0 is chosen
to satisfy the inviscid dispersion relation
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gk0 +
�k0

3

	
= 	�

2

2

, �4�

where � /2 is the frequency associated with the typical sub-
harmonic response of Faraday waves. After dividing �4� by
�2 we find G0+�0= 1

4 . G�t� describes the applied accelera-
tion; since time has been scaled by the forcing frequency �,
the dimensionless period of G�t� is 2
.

We write the impulsive forcing function in the form

Gimp�t� = �
n=−�

�

fn��t − tn� . �5�

It is parametrized by the locations tn of the impulses
�tn
 tn+1 , tn+N− tn=2
� and by the amplitudes fn �fn+N= fn�,
where N is the number of impulses in the repeating sequence.
The dimensionless amplitude fn of an impulse is given by

fn �
vnk0

�
, �6�

where vn is the jump in velocity at time tn. We also require

�
n=1

N

fn = 0, �7�

to prevent a net translation of the container. An example
of an impulsive acceleration function, along with the
corresponding velocity and position functions, is shown
in Fig. 1.

B. Linear stability analysis

1. Calculations

Our linear stability calculations follow the method
of �24�. From �1�, the linear stability problem takes the
form

„��t − ��2�2 − D̂��0�
2 − �G0 − G�t��
…h�x,t� = 0. �8�

We then write h�x , t�= pk�t�eik·x+c.c., where c.c. denotes
complex conjugate, and find that pk�t� satisfies

pk� + 2�k2pk� + ��2k4 + �0k3 + �G0 − G�t��k
pk = 0, �9�

where the k subscript emphasizes the dependence of the so-
lution on the perturbation wave number k= �k�. Hereafter we

focus on k�0; the k=0 mode cannot be excited due to mass
conservation.

Between each impulse, �9� is simply the equation for a
damped harmonic oscillator, with solution

pk�t� = Ak,ne�−�k2+i�k��t−tn� + c.c., t � �tn,tn+1� . �10�

Here �k is the natural frequency of a wave with wave num-
ber k, which is determined by the dispersion relation

�k
2 = �0k3 + G0k . �11�

We demand that pk�t� be continuous across each impulse,
i.e., pk�tn

+�= pk�tn
−�� pk�tn�, where pk�tn

±�� limt→tn
±pk�t�. Inte-

grating �9� across the nth impulse we obtain the following
jump condition:

pk��tn
+� − pk��tn

−� = fnkpk�tn� . �12�

This condition, together with the continuity requirement,
yields the following map from Ak,n to Ak,n+1:

	Ak,n+1
r

Ak,n+1
i 
 = e−�k2dnMk,n	Ak,n

r

Ak,n
i 
 , �13�

where

Mk,n � 	 ck,n − sk,n

sk,n − Fk,n+1ck,n ck,n + Fk,n+1sk,n

 . �14�

Here Ak,n
r �Ak,n

i � is the real �imaginary� part of Ak,n and
ck,n�cos��kdn�, sk,n�sin��kdn�, Fk,n� fnk /�k. Note that

FIG. 2. �a�–�c� Examples of neutral stability curves f�k� from
�21� for various two-impulse forcing functions. Solid curves corre-
spond to subharmonic tongues �Floquet multiplier −1�, while
dashed curves indicate harmonic tongues �Floquet multiplier +1�.
The spacing of the impulses in �18� is such that �a� �=0, �b�
�= 1

3 , �c� �= 1
2 . The dimensionless parameters in the calculations

are �=0.02 and �0=0.04 �corresponding to fluid parameters
�=0.1 cm2/s, �=16 dyn/cm, 	=1 g/cm3, and � /2
=20 Hz�. �d�
Eigenfunction pk�t� at k=kc, f = fc for an impulsive forcing function
with equally-spaced impulses, indicated by vertical lines. The di-
mensionless parameters used are �=0.17, �0=0.19 �corresponding
to physical parameters �=0.20 cm2/s, �=16 dyn/cm, 	=1 g/cm3,
and � /2
=80 Hz�.

FIG. 1. Examples of �a� acceleration, �b� velocity, and �c� posi-
tion of the fluid container over time in the case of two impulses per
period. The positions of the vertical lines in the acceleration func-
tion denote the locations of the delta functions; here they have equal
magnitude.
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�14� depends on only two forcing parameters: dn� tn+1− tn,
the time between the nth and �n+1�st impulses, and fn+1, the
strength of the �n+1�st impulse.

Piecing together the relationships between An and An+1,
An+1 and An+2, etc. across one period, we find the strobo-
scopic map that relates the solution of the linearized problem
at time tn to the solution one period later �i.e., after the se-
quence of N impulses�:

	Ak,n+N
r

Ak,n+N
i 
 = e−2
�k2

Mk	Ak,n
r

Ak,n
i 
 . �15�

Here Mk�Mk,n+N−1¯Mk,n, where Mk,j is given by �14�.
The eigenvalues of e−2
�k2

Mk determine the linear
stability of the flat interface to disturbances of wave
number k. Note that Mk has determinant one, so these
eigenvalues ��±� can be related to the trace of Mk by

e2
�k2
�±= 1

2Tr�Mk�±�� 1
2Tr�Mk��2−1. An instability exists

when both eigenvalues �Floquet multipliers� are real and the
magnitude of one exceeds unity. The threshold condition is
therefore

1

2
Tr�Mk� = ± cosh�2
�k2� , �16�

where “�” corresponds to the harmonic case �Floquet mul-
tiplier +1�, and “�” corresponds to the subharmonic case
�Floquet multiplier −1�. This threshold condition defines an
implicit equation f�k� describing the neutral stability curves,
where f is an appropriate measure of the overall impulse

strength �e.g., for N=2 we use f = �fn�= �fn+1��.
Examples of neutral stability curves for various accelera-

tion functions are presented in Figs. 2�a�–2�c� and 3. For
values of f below the minimum of these curves, the trivial
solution �h=�=0� is stable. When f is increased above
the critical forcing amplitude fc at the curves’ minimum
�with corresponding critical wave number kc�, the flat surface
solution becomes unstable to standing waves. An example
of the associated critical eigenfunction, pk�t� �k=kc and
f = fc�, is shown in Fig. 2�d�. Note the presence of kinks
in pk�t� at the impulses, a consequence of the jump condition
�12�.

2. Linear stability results for N=2

We now focus our analysis on the case of two impulses
per period by setting

fn = �− 1�nf , tn = 
	n + �1 − �− 1�n�
�

2

 �17�

in �5�. Here

� �
d0 − d1

2

� �− 1,1� �18�

measures the deviation from equal spacing of the impulses.
Thus �=0 corresponds to equally-spaced impulses, and
as ��� increases the spacing between the impulses becomes
increasingly asymmetric; see Fig. 1 for an example where
�
0.

It follows from �15� that Ak,n+2 and Ak,n are related by

	Ak,n+2
r

Ak,n+2
i 
 = e−2
�k2	 cos�2
�k� − Fncnsn+1 − sin�2
�k� + Fnsnsn+1

sin�2
�k� + Fnsn+1�sn + Fncn� cos�2
�k� + Fnsn+1�cn − Fnsn�

	Ak,n

r

Ak,n
i 
 , �19�

where

cn � cos��kdn�, sn � sin��kdn�,

dn = 
�1 + �− 1�n��, Fn =
fnk

�k
. �20�

Solving �16� for the neutral stability curves f�k�, we find

f�k� =
2�k

k
�±cosh�2
�k2� − cos�2
�k�

cos�2
�k� − cos�2
�k��
, �21�

where �k is given by �11�. As before, “�” corresponds to the
harmonic case and “�” to the subharmonic case. Note that
f�k� is invariant under �→−�, so we can restrict to �
� �0,1� for the remainder of the linear analysis. This is not,
however, a symmetry of the full problem, and we will see
that the sign of � affects the nonlinear response of the fluid
to the impulsive forcing function.

We now examine in some detail the spacing and sequence
of resonant tongues in the case of two impulses per period.
For the purposes of this analysis, we use �k as the indepen-
dent variable, where �k and k are related through the mono-
tonic dispersion relation �11�. We introduce

D��k� � cos�2
�k� − cos�2
�k�� , �22�

and denote the successive zeroes of D��k� by �k
j

��k
j 
�k

j+1 ,�k
0=0�. The expression f�k� for the neutral stabil-

ity curves, given by �21�, diverges at each �k
j , which leads to

the structure of clearly demarcated resonance tongues seen in
Figs. 2�a�–2�c�. Since for k�0 the numerator of the expres-
sion inside the square root in �21� is strictly positive in the
harmonic case and negative in the subharmonic case, it fol-
lows that D��k��0 for harmonic resonance tongues and
D��k�
0 for subharmonic resonance tongues.

In the general case, resonance tongues will alternate
between harmonic and subharmonic as k �equivalently, �k�
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increases and D��k� alternates in sign. However, for
special values of �, successive subharmonic �or harmonic�
tongues occur. Specifically, this happens for some j if
D��k

j�=D���k
j�=0. We denote these double zeroes by

�̂k
m ,m�Z+. It is straightforward to show that for ����1

these degenerate values occur only when cos�2
�̂k
m�

=cos�2
�̂k
m��= ±1, which implies �= p /q for some co-

prime integers p, q �0� p
q�. If p and q are both odd, then
�̂k

m=mq /2; successive subharmonic �harmonic� tongues
occur when m is even �odd�. �See Fig. 2�b�, generated
with �= 1

3 .� In contrast, if either p or q is even �or p=0�, then
only subharmonic tongues can occur in succession;
when ��0 these are separated by vertical asymptotes at
�̂k

m=mq �see Fig. 2�a��, while when �=0 there are vertical
asymptotes at each integer value of �k separating successive
subharmonic tongues �see Fig. 2�c��. In other words, there
are no harmonic resonance tongues for equally-spaced im-
pulses �Fig. 2�a��, as previously noted by Bechhoefer and
Johnson �24�.

3. Comparison with sinusoidal and multifrequency forcing

We now compare the linear stability results for equally-
spaced impulsive forcing �i.e., �=0� with the corresponding
results for sinusoidal forcing

Gsin�t� = fsin sin�t� . �23�

Here fsin�gsink0 /�2, where gsin is the maximum �dimen-
sioned� acceleration. �See Fig. 3�a� for an example of neutral
stability curves in the case of sinusoidal forcing.� As noted
earlier, the most striking difference between these two cases,
manifest in the neutral stability curves �21�, is the lack of
harmonic tongues for the impulsive case. This difference is a
consequence of the way that the Floquet multipliers associ-

ated with �19� move in the complex plane as the perturbation
wave number k is varied, as illustrated in Fig. 4.

To further compare equally-spaced impulses and sinu-
soidal forcing, we consider the respective critical forcing
strengths at the onset of standing waves, fc,imp and fc,sin. In
the limit of weak damping we may expand �21� about �=0
and �k= 1

2 �near the minimum of the neutral stability curves�
to obtain

fc,imp = 
kc��1 + O��2�� . �24�

For sinusoidal forcing and small damping we have

fc,sin = 2kc��1 + O��2�� , �25�

�see, for example, �31��. Thus fc,imp / fc,sin=
 /2+O��2�. This
is the same ratio that arises when considering �the first term
in� the Fourier series expansion of the impulsive forcing
function with �=0:

Gimp�t� =
2



f imp�

j=0

�

cos��2j + 1�t� . �26�

Here we have used �5� and �17� with fn= �−1�nf imp. In Fig.
5�a� we plot the ratio fc,imp / fc,sin as a function of forcing
frequency �the most easily tuned parameter in experiments�
for several viscosities. As anticipated, for small � this ratio is
well approximated by 
 /2. Furthermore, the ratio decreases
with increasing viscosity �equivalently, �� with a deviation
�1− �2/
��fc,imp / fc,sin��=O��2�.

We may also consider the effect of adding the next
term, cos�3t�, in the truncation of the Fourier series �26�
and examine fc,2, the critical value of this two-frequency
forcing function, in the weak damping limit. �In general, fc,M
denotes the dimensionless forcing strength at onset for the
M-term truncation of �26�.� It is demonstrated in �32� that for

FIG. 3. Neutral stability curves for truncated Fourier series ap-
proximations of equally spaced impulses with �a� 1 term, �b� 10
terms, �c� 20 terms, and �d� 50 terms �with curves for equally-
spaced impulses overlaid as solid lines�. Large points correspond to
subharmonic tongues and the smaller points to harmonic tongues.
Parameters are the same as those in the neutral stability curves
�a�–�c� of Fig. 2. Curves were generated using the method described
in �18,22�.

FIG. 4. Floquet multipliers �± associated with Eq. �19� plotted
in the complex plane over the range k� �0,3� with f = fc�1+1.4�
�this forcing is well above the onset value for the first resonance
tongue but below onset for the second� for �a� equally-spaced im-
pulses, and �b� sinusoidal forcing. These cases differ in that only for
sinusoidal forcing do the Floquet multipliers split on the positive
real axis. Fluid parameters are as in the neutral stability curves of
Fig. 2�a�–2�c�. Numbers indicate special points where k=0 �point
1�, where complex Floquet multipliers meet on the negative real
axis and split into two real values �point 2�, where real Floquet
multipliers recombine before splitting into a complex conjugate pair
�point 3�, and where complex Floquet multipliers meet on the posi-
tive real axis �point 4�.
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a two-frequency forcing function with commensurate fre-
quencies m� and n� �m� is assumed to drive the primary
instability�, the n� frequency component is destabilizing
when m /n
�42�1.19. By this we mean that the threshold
for instability is lower in the two-frequency case than in the
single frequency case. For the two-term truncation of �26�,
m /n= 1

3 and hence we expect that fc,2
 fc,1= �
 /2�fc,sin.
Indeed, this is consistent with our finding that fc,imp / fc,sin


 /2 for impulsive forcing �see Fig. 5�a��.

As expected, adding more terms to the truncation of the
Fourier series �26� results in a closer approximation to
the critical forcing strength fc,imp, as shown in Fig. 5�b�.
Despite this good agreement between fc,imp and fc,M, the
M-term truncated Fourier series is far less successful in cap-
turing the behavior of the resonance tongues away from the
minimum of the first tongue; this can be seen in Fig. 3. For
�=0.02 and �0=0.04, for example, fc,M approximates fc,imp
remarkably well even for small M �see the crosses in Fig.
5�b��; however, with M =50, only the first four resonance
tongues plausibly resemble those for impulsive forcing �see
Fig. 3�d��.

III. WEAKLY NONLINEAR ANALYSIS

A. Weakly nonlinear calculation

We now extend our analysis of N=2 impulses to
the weakly nonlinear regime in the case of one-dimensional

waves. Following �33�, we perform a multiscale
expansion:

h�x,t,T� = �h1�x,t,T� + �2h2�x,t,T� + ¯ , �27a�

��x,t,T� = ��1�x,t,T� + �2�2�x,t,T� + ¯ , �27b�

where ��1, T=�2t is a slow time, and the forcing amplitude
is written f = fc�1+�2f2�. We seek spatially-periodic solutions
in the separable Floquet-Fourier form:

h1�x,t,T� = Z�T�p1�t�eikcx + c.c., �28a�

h2�x,t,T� = Z2�T�p2�t�e2ikcx + c.c., �28b�

�1�x,t,T� = Z�T�q1�t�eikcx + c.c., �28c�

�2�x,t,T� = Z2�T�q2�t�e2ikcx + c.c., �28d�

where the critical wave number kc, and the periodic eigen-
function p1�t� are determined from the linear stability analy-
sis. Specifically, we take �kc , fc� to be the minimum of the
neutral stability curves and use �10�, evaluated at k=kc and
with �Akc,n�=1, to obtain p1�t�. The phase of Akc,n is deter-
mined by the map �19�, evaluated at �k , f�= �kc , fc�, and the
�subharmonic� condition p1�t+2
�=−p1�t� �equivalently,
Akc,n+2=−Akc,n�:

Akc,n
i

Akc,n
r =

cos�2
�kc
� − Fncnsn+1 + e2
�kc

2

− sin�2
�kc
� + Fnsnsn+1

. �29�

This expression defines the critical eigenmode associated
with the instability. The subharmonic assumption
Akc,n+2=−Akc,n is valid when the instability is associated
with the first resonance tongue, as it is for all parameters
we have investigated. Plugging �28c� into �1a� yields
q1�t�= �1/kc��p1��t�+�kc

2p1�t�� at leading order in �. Since in
this section k will generally be fixed at its critical value, we
hereafter drop this subscript from many expressions �e.g., we
write An for Akc,n� or replace it with a subscript 1 �such as
with p1�t��.

At second order we find the equation �cf. �9��

q1
2 = p2� + 2��2kc�2p2� + ��2�2kc�4 + �0�2kc�3

+ �G0 − G�t��2kc
p2, �30�

which has the solution

p2�t� = aAn
2e2�−�kc

2+i�1��t−tn� +
1

2
b�An�2e−2�kc

2�t−tn�

+ Bne�−��2kc�2+i�2��t−tn� + c.c., �31�

for t� �tn , tn+1�. Here

a =
− 2kc�1

2

�2
2 − 4�1

2 + 4�2kc
2 + 8i�k2�1

,

FIG. 5. �a� Ratio of critical forcing strength for impulsive
and sinusoidal forcing as a function of forcing frequency �Hz�. Vis-
cosities are labeled in the figure; other parameters are as in the
neutral stability curves �a�–�c� of Fig. 2. The solid line for �=1cS is
indistinguishable from a horizontal line at 
 /2. �b� Ratio of critical
forcing strengths for equally-spaced impulses and the M-term trun-
cated Fourier series, as a function of M, for �0=0.04 and �=0.02
�crosses�, �=0.04 �triangles�, and �=0.1 �open circles�.
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b =
4kc�1

2

�2
2 + 4�2kc

4 , �32�

and �1 ��2� is the natural frequency of a wave with wave
number kc �2kc� obtained from the dispersion relation �4�.
Note that the “homogeneous” solution to �30� must be in-
cluded �i.e., Bn�0� to ensure that p2�t� is continuous. Using
this continuity condition and the jump condition on p2� �ob-
tained as in the linear stability calculation�, we relate Bn+1 to
Bn through the map

	Bn+1
r

Bn+1
i 
 = e−4�kc

2dnM2,n	Bn
r

Bn
i 
 + Rn + bSn. �33�

Here M2,n is the matrix Mk,n of �14� with k=2kc; the vectors
Rn and Sn are given in the Appendix. To obtain Bn, we re-
quire that Bn+2=Bn. �This harmonic condition is due to the
fact that q1

2, the driving term in �30�, is 2
-periodic.�
At third order we obtain the solvability condition �see

�33��

�
dZ

dT
= Lf2Z + �Cres + Cnon��Z�2Z , �34�

where �, L, Cres, and Cnon are given by

� =
1

2

�

0−

4
−

�p1� + �kc
2p1�p̃1dt =

1

2

�A0Ã0�ei�1d0 − 1�

+ A1Ã1�ei�1d1 − 1� − 2i�1�d0A0Ã0 + d1A1Ã1�� + c.c.,

�35a�

L =
kc

4

�

0−

4
− Gimp�t�
f

p1p̃1dt

=
kc

2

�A0Ã0 + A0Ã

¯
0 − A1Ã1 − A1Ã

¯
1� + c.c., �35b�

Cres = −
kc

2

2

�

0−

4
−

��q1p2�� + �kc
2q1p2�p̃1dt , �35c�

Cnon =
kc

3

4

�

0−

4
− �− �p1
2q1�� − �kc

2p1
2q1 + kcq1

2p1

+
3

2
kc

2�0p1
3�p̃1dt . �35d�

The full expressions for Cres and Cnon, after integrating, are
provided in the Appendix. In Eqs. �35� we use p̃1 to denote
the solution of the adjoint linear problem, which has the
same form as �8� but with �→−�. Hence

p̃1�t� = Ãne��k2+i�1��t−tn� + c.c., t � �tn,tn+1� . �36�

The map relating Ãn+1 to Ãn is similarly obtained from �13�
by replacing � with −� and setting k=kc. Note that in �34�
we separate the cubic coefficient C into two distinct contri-
butions, Cres �resonant� and Cnon �nonresonant�. The Cres
term can be traced to quadratic nonlinearities in �1� �i.e.,

terms in which the kc and 2kc modes interact�, while Cnon
derives from cubic nonlinearities and involves only the criti-
cal kc mode.

B. Weakly nonlinear results

We now examine in greater detail the cubic coefficient
C=Cres+Cnon, which determines the nonlinear saturation of
the instability to standing waves. Figure 6 shows C as a
function of the capillary parameter �0 for various choices of
�. We find, for most parameters, that C��0�
0, ensuring
that the bifurcation to standing waves is supercritical.
�We find subcritical bifurcations only in the capillary
wave regime, �0�0.25, and with extreme asymmetry, e.g.,
��0.99.�

A dominant feature of the curves shown in Fig. 6 is the
dip in C that reaches a minimum value at �0=�res�0.09.
This resonance feature is apparent both with impulsive
forcing �nonsolid lines in Fig. 6� and with sinusoidal forcing
�solid lines�. For this figure we have used a normalization
convention for p1�t� in the sinusoidal case which agrees
with our normalization convention in the impulsive case
��Akc,n�=1� in the limit �→0. Note that the sinusoidal and
impulsive results agree quantitatively for �=0.01 and �=0.
For larger damping ��=0.05�, the sinusoidal curve is shifted
relative to the impulsive ones indicating a difference between
their nonresonant contributions Cnon to C.

In the sinusoidal case, the dip in C has been attributed
to a 1:2 spatiotemporal resonance, i.e., at �res we have
2�1=�2 �see �23�, for example�. In particular, this feature,
which scales with 1/�, is due to the strong coupling between

FIG. 6. Cubic coefficient in �34� as a function of �0 with �a�
�=0.01 and �b� �=0.05. The dashed line is the result for impulsive
forcing with �=0.5; the dot-dashed line is for �=0; the dotted line
is for �=−0.5; the solid line is for sinusoidal forcing.
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the first subharmonic and the first harmonic modes, which
are spatially commensurate at �res. Since harmonic reso-
nance tongues are entirely absent from the neutral stability
picture for equally-spaced impulses, it is perhaps less appar-
ent that an important �damped� harmonic mode can exist at
2kc. That there is such a damped harmonic mode �which,
nonetheless, can never be excited� is evidenced by the ap-
pearance of the resonance dip in C at �res. We can also de-
termine directly the existence of a damped harmonic mode at
���res by examining the Floquet multipliers associated
with the linearized problem �19�. We find that the Floquet
multipliers cross the positive real axis as k is increased above
kc, which is the signature of a harmonic mode. Moreover,
when �=�res, the crossing occurs for k=2kc. See Fig. 4 for a
comparison of the Floquet multipliers in the impulsive and
sinusoidal cases.

A comparison of the �nonsolid� curves in Figs. 6�a� and
6�b� reveals that the spacing of the impulses can have a sig-
nificant effect on the magnitude of the resonance feature.
Some explanation for this behavior is suggested by recent
results �29,30� on multifrequency-forced Faraday waves in
which the form of the cubic amplitude equations is obtained
from the spatial symmetries and the �weakly broken� sym-
metries of time translation, time reversal, and Hamiltonian
structure. Here we are interested in the Fourier series expan-
sion for an impulsive forcing function with two impulses per
period:

Gimp�t� =
f imp

2

�
j=1

�

�1 − e−ij��1+��
��eijt + c.c. �37�

In �29,30� the contribution of the damped 2kc mode to the
1:2 spatiotemporal resonance is found to be most affected by
the forcing frequency 2� �where � is the primary driving
frequency� and its phase. This result suggests that we focus
on the drastically truncated two-term Fourier series

G2�t� =
f imp

2

��1 + e−i
��eit + �1 − e−2i
��e2it + c.c.� .

�38�

At leading order in the damping �, the onset of standing
waves occurs when the magnitude of the first term in �38�
becomes equal to � �see, for example, �31��. Using

f imp

2

�1 + e−i
�� = � , �39�

and simplifying the result through an appropriate time trans-
lation, we may rewrite �38� at onset as

G2�t� = �eit + F2e2it + c.c., �40�

where

F2 = 2i� sin	�



2

 . �41�

From Table 1 in �29� we find the predicted magnitude, at
leading order in �, of the resonant dip in the cubic coefficient
at �res,

Cres
2f = − �1

�L3� + �i�f2��sin �

�L3�2 − ��i f2��2
, �42�

Here �f2��= �F2�=2��sin��
 /2��, �=arg�F2�=sgn���
 /2, L3

is the linear damping coefficient of the 2kc mode
�L3= �2kc�2��4��, and �i is the coefficient of the linear
parametric driving term for the 2kc mode ��i=2kc /2�1�.
Thus Cres

2f , as a function of the asymmetry parameter �, be-
comes

Cres
2f ��� � −

�1

2��2 − sin	�


2

� . �43�

The constant �1 is positive and must be determined by a
nonlinear calculation; it depends on �0, but not, at leading
order, on �. Here we choose �1 such that the values of the
multifrequency prediction Cres

2f ��� and our direct calculation
of Cres��� at �0=�res from �A3� agree for small damping
��=0.001� at �=0. �We then use the same estimate of �1

throughout this comparison.� In Fig. 7, we compare Cres���
with the multifrequency prediction and find good agreement,
especially for small � where the multifrequency results are
expected to be valid. This agreement breaks down as ���
approaches unity �even more so for larger ��, an effect that is
not overly surprising given that ���→1 is an unphysical limit
requiring an infinite value of f imp to produce standing waves
�see �39��. Note that Cres

2f , given by �43�, scales with �−1,
which explains the difference in scales evident in Figs. 6�a�
and 6�b�.

FIG. 7. Resonant contribution Cres to the cubic coefficient of Eq.
�34� as a function of the asymmetry parameter � over the range
�−0.95,0.95�, calculated for the Zhang-Viñals equations using �A3�
�solid line� and using multifrequency forcing results �43� with
�1=0.235 �dashed line�. Plots are for �a� �=0.01, and �b� �=0.05.
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IV. DISCUSSION AND CONCLUSIONS

In this paper we examined the problem of Faraday waves
parametrically excited by a periodic sequence of impulses
�delta functions�. We showed how to extend the linear stabil-
ity analysis presented in �24� to include more general impul-
sive forcing functions, and investigated the weakly nonlinear
regime for one-dimensional surface waves in the case of two
impulses per period, comparing both linear and nonlinear
results with the more established cases of sinusoidal and
multifrequency forcing. Our analytical and numerical work
was conducted within the framework of the Zhang-Viñals
Faraday wave model, appropriate for describing small ampli-
tude surface waves on deep, weakly-viscous fluid layers.

One theoretical advantage of using an idealized impulsive
forcing function is that it allows for an exact, albeit generally
implicit, expression for the neutral stability curves associated
with the primary instability. Moreover, since the stroboscopic
map characterizing the linear problem can be explicitly con-
structed, Floquet multipliers can be readily determined as a
function of forcing and fluid parameters. This stands in sharp
contrast to the sinusoidal and multifrequency cases where
even the neutral curves must be determined numerically or
through an asymptotic expansion that assumes weak damp-
ing and forcing. A further consequence of exactly solving the
linear problem is that we are then able to derive explicit,
analytic expressions for the amplitude of weakly nonlinear
surface waves as a function of forcing and fluid parameters.

By varying the spacing between the up and down im-
pulses making up the 2
-periodic forcing function for N=2,
we found that the magnitude of the 1:2 resonance effect de-
pends dramatically, and monotonically, on the corresponding
asymmetry parameter �. Appealing to recent results on mul-

tifrequency forced Faraday waves �30�, valid in the limit of
weak damping, we obtained a prediction of this dependence
based on a truncated two-term Fourier series approximation.
This prediction agreed quite well with the results for impul-
sive forcing despite the severity of the approximation in-
volved.

We envision several ways in which this work could be
extended. For example, the methods used in this paper could
be easily applied to the case of piecewise constant forcing, a
type of driving function that has been explored in other sys-
tems �see �26,34�, for instance� where it also led to analytic
results. It would further be of interest to extend our weakly
nonlinear analysis to the case of two-dimensional patterns. In
such a context, additional questions of pattern selection, as
well as more specific comparisons with multifrequency forc-
ing, could be explored. One could try, for example, to con-
struct impulsive forcing functions that mimic specific effects
seen with multifrequency forcing. In this way the analytic
results available for impulsive forcing would complement
the numerical �19,22,32� and experimental results
�8–13,15,16� reported with multifrequency forcing.
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APPENDIX A: ANALYTIC EXPRESSIONS

The vectors given in �33� are

Rn = � Re�a�An
2e�−�kc

2+i�1�2dn − An+1
2 ��

2

�2
Re†a„An

2e�−�kc
2+i�1�2dn��− 1�nkcfc − �kc

2 − i�1� + An+1
2 ��kc

2 + i�1�…‡� , �A1�

and

Sn =�
1

2
��An�2e−2�kc

2dn − �An+1�2�

1

�2
��An�2e−2�kc

2dn��− 1�n2kcfc − �kc
2� + �An+1�2�kc

2
 � . �A2�

The expressions for a and b in these vectors are given by �32�, and �1 ��2� satisfies the dispersion relation �4� with wave
number kc �2kc�.

The full expressions for the components �Cres and Cnon� of the cubic coefficient in the solvability condition �34� are

Cres =
− 2i�1kc



�

j=0,1
AjBjÃj

�1
+ − i�1

�1
+ �e�1

+dj − 1� − ĀjBjAD j

�1
− + i�1

�1
− �e�1

−dj − 1� + 	AjBjAD j
�2 + i�1

�2
− ĀjBjÃj

�2 − i�1

�2

�e�2dj − 1�

+ 	aAj
3AD j

�3 + i�1

�3
+ �b − a��Aj�2AjÃj

�3 − i�1

�3

�e�3dj − 1� + aAj

3Ãj
�4 − i�1

�4
�e�4dj − 1� + �b − a�

��Aj�2AjAD j

2�kc
2 − i�1

2�kc
2 �e−2�kc

2dj − 1� + c.c., �A3�
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Cnon =
kc

2

4

�

j=0,1
Aj

3Ãj

3�0kc
3 − 2i�1�3

�4
�e�4dj − 1� + Aj�Aj�2Ãj

9�0kc
3 − 2i�1�3

�3
�e�3dj − 1� + Aj

3AD j

3�0kc
3 − 2i�1�3

�3
�e�3dj − 1�

+ Aj�Aj�2AD j

9�0kc
3 − i�1�3

− 2�kc
2 �e−2�kc

2dj − 1� + c.c., �A4�

where

�1
± = − 4�kc

2 + i�±2�1 + �2�, �2 = − 4�kc
2 + i�2, �3 = − 2�kc

2 + 2i�1, �4 = − 2�kc
2 + 4i�1. �A5�
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